Appendix B: Logistic Loss#

Imports#


# Auto-setup when running on Google Colab
import os
if 'google.colab' in str(get_ipython()) and not os.path.exists('/content/neural-networks'):
    !git clone -q https://github.com/fum-cs/neural-networks.git /content/neural-networks
    !pip --quiet install -r /content/neural-networks/requirements_colab.txt
    %cd neural-networks/notebooks
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
import plotly.express as px
import plotly.io as pio
pio.renderers.default = 'notebook'

1. Logistic Regression Refresher#


Logistic Regression is a classification model where we calculate the probability of an observation belonging to a class as:

\[z=w^Tx\]
\[\hat{y} = \frac{1}{(1+\exp(-z))}\]

And then assign that observation to a class based on some threshold (usually 0.5):

\[\begin{split}\text{Class }\hat{y}=\left\{ \begin{array}{ll} 0, & \hat{y}\le0.5 \\ 1, & \hat{y}>0.5 \\ \end{array} \right.\end{split}\]

2. Motivating the Loss Function#


  • In Lecture 2 we focussed on the mean squared error as a loss function for optimizing linear regression:

\[f(w)=\frac{1}{n}\sum^{n}_{i=1}(\hat{y}-y_i))^2\]
  • That won’t work for logistic regression classification problems because it ends up being “non-convex” (which basically means there are multiple minima)

  • Instead we use the following loss function:

\[f(w)=-\frac{1}{n}\sum_{i=1}^ny_i\log\left(\frac{1}{1 + \exp(-w^Tx_i)}\right) + (1 - y_i)\log\left(1 - \frac{1}{1 + \exp(-w^Tx_i)}\right)\]
  • This function is called the “log loss” or “binary cross entropy”

  • I want to visually show you the differences in these two functions, and then we’ll discuss why that loss functions works

  • Recall the Pokemon dataset from Lecture 2, I’m going to load that in again (and standardize the data while I’m at it):

df = pd.read_csv("data/pokemon.csv", usecols=['name', 'defense', 'attack', 'speed', 'capture_rt', 'legendary'])
x = StandardScaler().fit_transform(df.drop(columns=["name", "legendary"]))
X = np.hstack((np.ones((len(x), 1)), x))
y = df['legendary'].to_numpy()
df.head()
name attack defense speed capture_rt legendary
0 Bulbasaur 49 49 45 45 0
1 Ivysaur 62 63 60 45 0
2 Venusaur 100 123 80 45 0
3 Charmander 52 43 65 45 0
4 Charmeleon 64 58 80 45 0
  • The goal here is to use the features (but not “name”, that’s just there for illustration purposes) to predict the target “legendary” (which takes values of 0/No and 1/Yes).

  • So we have 4 features meaning that our logistic regression model will have 5 parameters that need to be estimated (4 feature coefficients and 1 intercept)

  • At this point let’s define our loss functions:

def sigmoid(w, x):
    """Sigmoid function (i.e., logistic regression predictions)."""
    return 1 / (1 + np.exp(-x @ w))


def mse(w, x, y):
    """Mean squared error."""
    return np.mean((sigmoid(w, x) - y) ** 2)


def logistic_loss(w, x, y):
    """Logistic loss."""
    return -np.mean(y * np.log(sigmoid(w, x)) + (1 - y) * np.log(1 - sigmoid(w, x)))
  • For a moment, let’s assume a value for all the parameters execpt for \(w_1\)

  • We will then calculate the mean squared error for different values of \(w_1\) as in the code below

w1_arr = np.arange(-3, 6.1, 0.1)
losses = pd.DataFrame({"w1": w1_arr,
                       "mse": [mse([0.5, w1, -0.5, 0.5, -2], X, y) for w1 in w1_arr],
                       "log": [logistic_loss([0.5, w1, -0.5, 0.5, -2], X, y) for w1 in w1_arr]})
losses.head()
w1 mse log
0 -3.0 0.451184 1.604272
1 -2.9 0.446996 1.571701
2 -2.8 0.442773 1.539928
3 -2.7 0.438537 1.508997
4 -2.6 0.434309 1.478955
fig = px.line(losses.melt(id_vars="w1", var_name="loss"), x="w1", y="value", color="loss", facet_col="loss", facet_col_spacing=0.1)
fig.update_yaxes(matches=None, showticklabels=True, col=2)
fig.update_xaxes(matches=None, showticklabels=True, col=2)
fig.update_layout(width=800, height=400)

3. Breaking Down the Log Loss Function#


  • So we saw the log loss before:

\[f(w)=-\frac{1}{n}\sum_{i=1}^ny_i\log\left(\frac{1}{1 + \exp(-w^Tx_i)}\right) + (1 - y_i)\log\left(1 - \frac{1}{1 + \exp(-w^Tx_i)}\right)\]
  • It looks complicated but it’s actually quite simple. Let’s break it down.

  • Recall that we have a binary classification task here so \(y_i\) can only be 0 or 1.

When y = 1#

  • When \(y_i = 1\) we are left with:

\[f(w)=-\frac{1}{n}\sum_{i=1}^n\log\left(\frac{1}{1 + \exp(-w^Tx_i)}\right)\]
  • That looks fine!

  • With \(y_i = 1\), if \(\hat{y_i} = \frac{1}{1 + \exp(-w^Tx_i)}\) is also close to 1 we want the loss to be small, if it is close to 0 we want the loss to be large, that’s where the log() comes in:

y = 1
y_hat_small = 0.05
y_hat_large = 0.95
-np.log(y_hat_small)
2.995732273553991
-np.log(y_hat_large)
0.05129329438755058

When y = 0#

  • When \(y_i = 1\) we are left with:

\[f(w)=-\frac{1}{n}\sum_{i=1}^n\log\left(1 - \frac{1}{1 + \exp(-w^Tx_i)}\right)\]
  • With \(y_i = 0\), if \(\hat{y_i} = \frac{1}{1 + \exp(-w^Tx_i)}\) is also close to 0 we want the loss to be small, if it is close to 1 we want the loss to be large, that’s where the log() comes in:

y = 0
y_hat_small = 0.05
y_hat_large = 0.95
-np.log(1 - y_hat_small)
0.05129329438755058
-np.log(1 - y_hat_large)
2.99573227355399

Plot Log Loss#

  • We know that our predictions from logistic regression \(\hat{y}\) are limited between 0 and 1 thanks to the sigmoid function

  • So let’s plot the losses because it’s interesting to see how the worse our predictions are, the worse the loss is (i.e., if \(y=1\) and our model predicts \(\hat{y}=0.05\), the penalty is exponentially bigger than if the prediction was \(\hat{y}=0.90\))

y_hat = np.arange(0.01, 1.00, 0.01)
log_loss = pd.DataFrame({"y_hat": y_hat,
                         "y=0": -np.log(1 - y_hat),
                         "y=1": -np.log(y_hat)}).melt(id_vars="y_hat", var_name="y", value_name="loss")
fig = px.line(log_loss, x="y_hat", y="loss", color="y")
fig.update_layout(width=500, height=400)

4. Log Loss Gradient#


  • In Lecture 2 we used the gradient of the log loss to implement gradient descent

  • Here’s the log loss and it’s gradient:

\[f(w)=-\frac{1}{n}\sum_{i=1}^ny_i\log\left(\frac{1}{1 + \exp(-w^Tx_i)}\right) + (1 - y_i)\log\left(1 - \frac{1}{1 + \exp(-w^Tx_i)}\right)\]
\[\frac{\partial f(w)}{\partial w}=\frac{1}{n}\sum_{i=1}^nx_i\left(\frac{1}{1 + \exp(-w^Tx_i)} - y_i)\right)\]
  • Let’s derive that now.

  • We’ll denote:

\[z = -w^Tx_i\]
\[\sigma(z) = \frac{1}{1 + \exp(z)}\]
  • Such that:

\[f(w)=-\frac{1}{n}\sum_{i=1}^ny_i\log\sigma(z) + (1 - y_i)\log(1 - \sigma(z))\]
  • Okay let’s do it:

\[\begin{split} \begin{equation} \begin{split} \frac{\partial f(w)}{\partial w} & =-\frac{1}{n}\sum_{i=1}^ny_i \times \frac{1}{\sigma(z)} \times \frac{\partial \sigma(z)}{\partial w} + (1 - y_i) \times \frac{1}{1 - \sigma(z)} \times -\frac{\partial \sigma(z)}{\partial w} \\ & =-\frac{1}{n}\sum_{i=1}^n\left(\frac{y_i}{\sigma(z)} - \frac{1 - y_i}{1 - \sigma(z)}\right)\frac{\partial \sigma(z)}{\partial w} \\ & =\frac{1}{n}\sum_{i=1}^n \frac{\sigma(z)-y_i}{\sigma(z)(1 - \sigma(z))}\frac{\partial \sigma(z)}{\partial w} \end{split} \end{equation} \end{split}\]
  • Now we just need to work out \(\frac{\partial \sigma(z)}{\partial w}\), I’ll mostly skip this part but there’s an intuitive derivation here, it’s just about using the chain rule:

\[\begin{split} \begin{equation} \begin{split} \frac{\partial \sigma(z)}{\partial w} & = \frac{\partial \sigma(z)}{\partial z} \times \frac{\partial z}{\partial w}\\ & = \sigma(z)(1-\sigma(z))x_i \\ \end{split} \end{equation} \end{split}\]
  • So finally:

\[\begin{split} \begin{equation} \begin{split} \frac{\partial f(w)}{\partial w} & =\frac{1}{n}\sum_{i=1}^n \frac{\sigma(z)-y_i}{\sigma(z)(1 - \sigma(z))} \times \sigma(z)(1-\sigma(z))x_i \\ & = \frac{1}{n}\sum_{i=1}^nx_i(\sigma(z)-y_i) \\ & = \frac{1}{n}\sum_{i=1}^nx_i\left(\frac{1}{1 + \exp(-w^Tx_i)} - y_i)\right) \end{split} \end{equation} \end{split}\]